Overbarrier Resonances as Solutions of Set Inhomogeneous Schrodinger Equations
نویسندگان
چکیده
منابع مشابه
Self - Similar Solutions for Nonlinear Schrodinger Equations ∗
In this paper we study self-similar solutions for nonlinear Schrödinger equations using a scaling technique and the partly contractive mapping method. We establish the small global well-posedness of the Cauchy problem for nonlinear Schrödinger equations in some non-reflexive Banach spaces which contain many homogeneous functions. This we do by establishing some a priori nonlinear estimates in B...
متن کاملStochastic Schrodinger equations
A derivation of stochastic Schrödinger equations is given using quantum filtering theory. We study an open system in contact with its environment, the electromagnetic field. Continuous observation of the field yields information on the system: it is possible to keep track in real time of the best estimate of the system’s quantum state given the observations made. This estimate satisfies a stoch...
متن کاملStatistics of resonances and of delay times in quasiperiodic Schrodinger equations
We study the distributions of the resonance widths P(gamma) and of delay times P(tau) in one-dimensional quasiperiodic tight-binding systems at critical conditions with one open channel. Both quantities are found to decay algebraically as gamma(-alpha) and tau(-gamma) on small and large scales, respectively. The exponents alpha and gamma are related to the fractal dimension D(E)(0) of the spect...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملFront Solutions for Bistable Differential-Difference Equations with Inhomogeneous Diffusion
We consider a bistable differential-difference equation with inhomogeneous diffusion. Employing a piecewise linear nonlinearity, often referred to as McKean’s caricature of the cubic, we construct front solutions which correspond, in the case of homogeneous diffusion, to monotone traveling front solutions or stationary front solutions in the case of propagation failure. A general form for these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1998
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp.100.327